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Nonuniversal scale transformations of the physical fields are extended to pure quantum fluids and used to
calculate the susceptibility, the specific heat, and the order parameter density along the critical isochore of He3

near its liquid-vapor critical point. Within the so-called preasymptotic domain, where the Wegner expansion
restricted to the first term of confluent corrections to scaling is expected to be valid, the results are in agreement
with the experimental measurements and recent predictions, either based on the minimal-substraction renor-
malization and the massive renormalization schemes within the �d=3

4 �n=1� model, or based on the crossover
parametric equation of state for Ising-like systems.
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I. INTRODUCTION

It is well known that the thermodynamic quantities of real
pure fluids close to their gas-liquid critical point �CP� follow
the asymptotic power-law behavior predicted for the three-
dimensional �3D� Ising-like universality class in the
asymptotic critical domain where ���0 �1�. The distance to
the critical point is measured by the parameter �, related to
the inverse correlation length �−1. � characterizes the spatial
extent of the diverging fluctuations of the local density which
is related to the order parameter density of the gas-liquid
transition. �0, the so-called “cutoff’ wave number �1�, is a
�nonuniversal� finite wave number characterizing a discrete
microscopic structure of a fluid with spacing �0

−1. The criti-
cal thermophysical behavior of the fluid properties occurs
when ��0�1. Asymptotically close to the critical point, this
microscopic parameter �0 which characterizes each pure
fluid, becomes unimportant when the thermodynamic prop-
erties become singular. As a result, all the pure fluids in their
asymptotic critical domain obey to the two-scale factor uni-
versality associated to hyperscaling. Their properties can
then be described by the same reduced equation of state
�EOS� and the same correlation functions, using only two
dimensionless parameters which are fluid dependent, in con-
formity with the two-scale-factor universality of the 3D
Ising-like universality class.

However, it is also now well established that away from
this asymptotic critical region, the properties of real pure
fluids deviate from hyperscaling. This deviation leads to a
crossover phenomenon which reflects a competition between
universality and nonuniversality when ��0�1. This cross-
over problem has been investigated in considerable detail,
mainly in the classical-to-critical crossover framework of
field theory �FT� �2�. The resulting field theoretical crossover
functions describe the crossover behavior of the �d=3

4 �n=1�
model in the Ising-like universality class in three dimensions
�n=1 is the dimension of the order parameter density for the
critical transition, and d=3 is the space dimension of the

system�. A better understanding of nonuniversal behavior
linked to finite values �although large� of the correlation
length can then be accounted for by a restricted summation
of the Wegner expansion �3�, which introduces one addi-
tional system-dependent parameter to characterize the preas-
ymptotic domain �4,5� �as discussed in Ref. �5� the singular
power laws expressed at the first-order of the Wegner expan-
sion are expected to be valid within the preasymptotic do-
main�. However, the values of the adjustable parameters are
then dependent on the approximations used in each particular
renormalization scheme. As a practical result, the micro-
scopic length, the crossover parameter, as well as the two
asymptotic scale factors, form a larger set of adjustable pa-
rameters, including obviously an extended set of measurable
critical point coordinates. Therefore, the exact nature of the
two asymptotic scale factors for the fluid physical fields, still
remains unknown. This is still the reason of a debate �6�, due
to the fact that fluid variables have no definite critical scaling
dimensionality at finite distance to the critical point.

The asymptotic existence of such two scale factors for the
one-component fluid subclass, was initially postulated in
�7,8� on a phenomenological basis supporting the asymptotic
results of the massive renormalization scheme �4,5,9,10� of
the FT framework. It was hypothesized that the complete
information to estimate asymptotic singular behavior of flu-
ids is provided by the experimental critical point location,
i.e., by a minimal parameter set, noted Qc,ap̄

min �11�, composed

of four �generalized� critical coordinates �see Eq. �2� below�
�the subscript c refers to a property defined at the critical
point, while the subscript p̄ refers to a property normalized
per particle�. This minimal set defines the critical point loca-
tion on the equilibrium phase surface given by equation
�ap̄

p �p ,vp̄ ,T�=0, where p is the pressure, vp̄= V
N is the volume

per particle, and T is the temperature �N is the total number
of particles filling a total volume V�. The generalized coor-
dinates are composed of three usual critical point coordinates
and one preferred direction �see Eq. �1� below� of the tangent
plane to the phase surface. Using xenon as a standard critical
fluid �7,8,10�, it was then proposed to perform adequate scale
dilatations of the two relevant physical variables for each
one-component fluid. Applying such a scale dilatation*Electronic address: garrabos@icmcb-bordeaux.cnrs.fr
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method, the physical singular behavior of any one-
component fluid could be renormalized on the corresponding
“master” �i.e., unique� singular behavior, where master �i.e.,
constant amplitudes� features with respect to the one-
component fluid subclass are in accordance with universal
�i.e., universal amplitude combinations� features with respect
to the complete 3D Ising-like universality class.

Specifically, this initial substantiation of master scaling
is based on the explicit choice of the same metric factors
for thermodynamic and correlation functions. That permits
an unambiguous definition of the microscopic length �0

−1

proportional to a critical length scale factor 	c= � kBTc

pc
�1/d

made from an appropriate combination of the critical tem-
perature Tc and pressure pc coordinates �kB is the Boltzmann
constant and d=3�. From the well-known short range of the
Lennard-Jones- �LJ-� like molecular interactions in one-
component fluids �12�, characterized by the equilibrium
position re

LJ between two interacting particles, we have �0
−1

=	c�2re
LJ �7�, ignoring the possible contribution of quantum

effects on �0
−1. In this paper, using the recent experimental

measurements near the critical point of 3He �13,14�, we ex-
tend this scale dilatation method to quantum fluids. This ex-
tension is based on a phenomenological modification of the
nonquantum renormalized critical behavior, which is only
valid at the critical temperature. Since experimental values of
the minimum critical set already contain their actual contri-
bution of quantum effects, we expect that remaining part of
quantum effects only affect the microscopic length ��0�−1, in
such a relative way that ��0�qe

* �−1=	c �see below Eq. �14��.
The adjustable dimensionless parameter �qe

* is introduced
here in order to maintain the master features observed for the
one-component fluid subclass. Therefore, in addition to the
minimal set of four critical parameters, the renormalized
variables need to contain only one supplementary well-
defined dimensionless parameter �qe

* , whose value is, either
fluid independent ��qe

* =1� in the absence of quantum effects,
or quantum-fluid dependent ��qe

* 
1� in the presence of
quantum effects, without violating the asymptotic universal
features of the 3D Ising-like universality class.

The paper is organized as follows. In Sec. II, we recall the
basic elements of the scale dilatation method and we intro-
duce its extension to account for quantum effects on the mi-
croscopic length scale. In Sec. III, we consider the fitting
results �14� obtained by Zhong et al. for 3He to discuss the
estimated value of the adjustable parameter �qe

* �3He�
=1.11009. Before conclusions, Sec. IV gives a brief com-
parison with three crossover modeling of 3He critical prop-
erties.

II. SCALE DILATATION OF THE FLUID PHYSICAL
VARIABLES

A. The minimal set Qc,ap̄

min of four scale factors

As stated in the Introduction, the basic idea �7,8� of the
scale dilatation method relies on a simple thermodynamic
assertion concerning the thermodynamic information pro-
vided by the critical point location on the fluid phase surface
of equation �ap̄

p �p ,vp̄ ,T�=0 �11�. The minimum of informa-

tion needed to predict singular thermodynamic behavior of a
pure fluid is then given by �1� the three critical coordinates
Tc, pc, and vp̄,c of the liquid-vapor critical point and �2� the
two preferred directions which define the position of the tan-
gent plane to the phase surface at the critical point �both
needed in order to characterize the linearized asymptotic ap-
proach towards the critical point along two well-defined ther-
modynamic paths�. One direction is common to all pure flu-
ids �since � �p

�vp̄
�
T=Tc

= � �T
�vp̄

�
p=pc

=0�, and only the second

direction

�c� = � �p

�T
�

vp̄=vp̄,c

= �dpsat

dT
�

T=Tc

�1�

is characteristic of each pure fluid. psat is the saturation pres-
sure in the non homogeneous domain. We note that

Qc,ap̄

min = �Tc,pc,vp̄,c,�c�	 �2�

is this minimal set made of four critical parameters.
From thermodynamic principles, this topological informa-

tion concerns all the incipient equilibrium states very close to
the unstable single critical point. From these four coordi-
nates, we can calculate unequivocally the following four
fluid characteristic parameters,

��c�−1 = kBTc 
 �energy� , �3�

	c = � kBTc

pc
� 1

d

 �length� , �4�

Zc =
pcmp̄

ckBTc
, �5�

Yc = ��c�
Tc

Pc
� − 1, �6�

where c= � N
V

�
cmp̄ is the critical density of the system made

of particles of known individual mass mp̄. ��c�−1of Eq. �3�
fixes the energy unit at the macroscopic scale. 	c of Eq. �4�
fixes the length unit at the macroscopic scale. Equations �3�
and �4� are sufficient to make dimensionless all the thermo-
dynamic and correlation functions of pure fluids �7,8�. Zc
in Eq. �5� is the critical compression factor. We then intro-

duce the useful compression factor Z=
−J�T,V,�p̄�

kBT as the dimen-
sionless opposite form of the total Grand potential
J�T ,V ,�p̄�=−p�T ,�p̄��V, expressed in terms of its three
natural intensive variables T, V, and �p̄. For the total system,
�p̄ is the chemical potential per particle, i.e., the intensive
variable conjugated to N, independent of p and T, respec-
tively � and T are the two other independent intensive vari-
ables, conjugated to V and S, respectively�. From the experi-
mental phase surface of equation �ap̄

p �p ,vp̄ ,T�=0, it is easy

to construct another practical phase surface of equation
��Z , ̃ ,T��=0 where ̃= � c and T�= T �Tc are the useful
dimensionless density and temperature variables, respec-
tively. In such a representation of the fluid equilibrium states,
the characteristics numbers Zc of Eq. �5� and YcZc made of
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the product between Eqs. �5� and �6�, are given by

Zc = − �� �Z

� ̃
�
�
�

CP

= − �� �Z

�
�

LVE
�

CP
, �7�

YcZc = �� �Z

�T��

�

CP
, �8�

where all the derivatives refer to their values at the critical
point coordinates, while subscript � means any isocline at
constant �critical � value of one intensive variable � among
T, p, or �p̄, and subscript “LVE” means the liquid vapor
equilibrium line. Therefore, the two caracteristic numbers Zc
and YcZc are the two “preferred” critical directions �15� at
the critical point of the phase surface, for the critical iso-
therm path and the critical isochore path, respectively.

From basic modeling of a binary effective interaction
characterized by a minimum energy well depth �m

LJ at the pair
equilibrium position re

LJ between two particles, we obtain,
��c�−1��m

LJ and 	c�2 re
LJ, where �m

LJ and re
LJ are natural

units for energy and length at the microscopic scale, respec-
tively. Here the subscript LJ stands for a short-ranged
Lennard-Jones-like potential �12�. It follows that 	c is a mea-
sure of the mean extension range of the attractive dispersion
forces and

vc,I = �	c�d �9�

is the critical volume of the microscopic critical interaction
cell. In such a configuration, the inverse of the critical com-
pression factor has a clear physical meaning since

1

Zc
=

vc,I

vp̄,c
= nc,I

* �10�

is the number of fluid particles filling the interaction cell at
criticality, i.e., for T=Tc, n=nc, and then �0�=� �vp̄,c

= � V
N

�
PC is the critical volume per particle, and n �nc� is the

�critical� number density�. Using this result, it is easy to for-
mulate dimensionless thermodynamics in terms of normal-
ization per particle �subscript p̄�, or in terms of normalization
per critical interaction cell �subscript I�. As an immediate
consequence of Eqs. �10� and �8�, 1

Zc
and Yc are the two

numbers attached to the critical interaction cell.
The next step consists in postulating that the two numbers

�Zc ;Yc	 are the remaining pair of dimensionless characteris-
tic parameters at the scale of the critical interaction volume,
whatever the selected one-component fluid. In addition, it is
assumed that Zc is the characteristic factor of the scaling at
the critical point and along the critical isotherm, while Yc is
the characteristic factor of the scaling along the critical iso-
chore. Rewriting Eq. �2� as

Qc,ap̄

min = ���c�−1,	c, Zc,Yc	CIC �11�

we can expect that the complete information is contained in
the four scale factors which characterize the critical interac-
tion cell �CIC�. Then, as initially proposed in �7,8�, the mas-
ter singular behavior of the correlation functions at exact
criticality and along the critical isochore permits one to link

unequivocally their associated asymptotic amplitudes D̂ and

�0
+ �16�, to Zc and Yc, respectively, providing simultaneously

the hyperscaling �8�.

B. Quantum effects on the scale dilatation of physical fluid
variables

The scheme given in �8� also requires that the inverse
microscopic wave number �0

−1 is proportional to the charac-
teristic length scale 	c. Now, due to the short ranged molecu-
lar interaction in light pure fluids �17�, the influence of quan-
tum mechanical effects changes appreciably the shape of the
Lennard-Jones-like potential, and also slightly increases the
range of this interparticle potential �12�. This qualitative evi-
dence was demonstrated by introducing an effective poten-
tial, which is then a temperature-dependent quantity �18–20�.
The quantum effects increase as temperature decreases.
However, due to the formal analogy with the FT renormal-
ization scheme, our rescaling is basically defined for the
critical asymptotic domain, i.e., only when T�Tc. Moreover,
since the use of the actual critical parameters already in-
cludes quantum effects, the remaining additional quantum
effect, for T�Tc, acts only through the relative modification
of the microscopic length at Tc. In the absence of theoretical
support for this modification, we propose to normalize its
contribution with respect to the microscopic inverse wave
number defined for nonquantum fluids.

This contribution is expected to be small and limited to a
positive departure from unity. This value, noted �c, can then
be included in the two main phenomenological characteris-
tics of quantum particles:

�i� Their low mass and size, accounted for using propor-
tionality to the ratio

�T,c

	c
between the critical thermal wave-

length,

�T,c =
hP

�2�mp̄kBTc�1/2

�where hP is the Planck constant�, and the microscopic criti-
cal range 	c of the interaction;

�ii� Their statistics �such as bosons, fermions, etc.�, ac-
counted for by introducing a supplementary free parameter,
noted �q,f.

Therefore, the quantum corrections can be characterized
by the following dimensionless factor:

�qe
* = 1 + �c �12�

with

�c = �q,f
�T,c

	c
, �13�

where �c�0 is then the measure of the relative modification
of the shape and range of molecular interaction due to the
quantum effects.

Since the quantum effects increase slightly the range of
the molecular interaction, we postulate that the corrected mi-
croscopic wave number is given by
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�0�qe
* =

1

	c
�14�

�in a nonquantum fluid, our previous implicit relation was
�0= 1

	c
�. We expect that the rescaled quantum-fluid correla-

tion length �qf
* presents the master divergence previously de-

fined for all the nonquantum one-component fluids �8,21�.
Then,

�qf
* = �0� = ��qe

* �−1�* �15�

with

�* =
�

	c
. �16�

Similarly, any rescaled singular thermodynamic property of
the quantum fluid can be formulated from dimensional
analysis, in order to account for its proper �qe

* contribution
within vc,I, which maintains valid the previous master hy-
potheses made for the nonquantum fluid subclass.

Therefore, due to the formal analogy between the scale
dilatation method �8� and the basic hypotheses of the renor-
malization group approach �22,23�, all the above quantum
corrections are intrinsically accounted for according to our
renormalization scheme, provided that the transformations
�dilatations� of the two relevant physical fields are made us-
ing the following analytical relations:

Tqf
*  T* = Yc��

*, �17�

Hqf
* = ��qe

* �2H* = ��qe
* �2�Zc�−d/2�h*. �18�

Consequently, the dilatation of the physical order parameter
density reads

Mqf
* = �qe

* M* = �qe
* �Zc�d/2�m*. �19�

In Eqs. �17�–�19�,

��* = kB�c�T − Tc� , �20�

�h* = �c��p̄ − �p̄,c� �21�

while

�m* = �n − nc��	c�d. �22�

�p̄,c is the critical chemical potential per particle. Obviously,
in Eqs. �17�–�19�, T*, H*, and M* are the renormalized vari-
ables already defined for nonquantum fluids �8,21�.

C. Master and physical singular behavior

Because such transformations of the physical fields in the
FT framework have a range of validity including �at least�
the first correction-to-scaling �24�, our rescaled thermody-
namic and correlation functions should conform to the two-
term �leading and first-confluent� asymptotic description of
singularities within the preasymptotic domain. For example
when T* goes to zero along the critical isochore, the critical
behavior of any rescaled singular property Pqf

* is given by

Pqf
* = ZP

± �T*��x�1 + ZP
1,±�T*�� + O��T*�2��� , �23�

where x �with �= ±1� and � are the associated universal
critical exponents �25�. The subscript + is for the homoge-
neous domain T*
0 �i.e., T
Tc�, and the subscript − is for
the nonhomogeneous domain T*�0 �i.e., T�Tc�. The lead-
ing amplitudes ZP

± , and the first confluent amplitudes ZP
1,±,

are master �constant� numbers for all pure fluids. Their re-
spective values �see Sec. III A. below and Table I, columns 3
and 4� are obtained using xenon as a standard critical fluid
�21�, and using up-to-date estimates �25,24� of universal
asymptotic critical quantities �exponents and amplitudes
combinations�.

When the generalized critical parameters of a pure fluid
are known, there is an immediate practical interest to reverse
the use of the scale dilatation method. In fact, the basic ad-
vantage of this method is its ability to calculate all the am-
plitudes appearing in the singular divergences expressed at
first order of the Wegner expansion in ��*. For ��*→0±, the
critical behavior of the physical property P of the selected
pure fluid is represented by the two-term equation

P = P0
±���*��x�1 + P1

±���*�� + O����*�2��� , �24�

where P0
± and P1

± are the leading and the first confluent am-
plitudes. All the values of P0

± and P1
± can then be estimated

when the basic set of critical parameters is known for a se-
lected pure fluid, using each unequivocal relation linking the
physical quantity to its renormalized one �see Table I, col-
umns 6 and 7�.

III. THE HELIUM 3 CASE

A. Notations

The scale dilation method is now applied to the measure-
ments of Zhong et al. �14� of the isothermal compressibility
��T�, the singular specific heat ��cV�, and the coexisting den-
sity difference ��LV=L−V�, along the critical isochore of
3He. We complete these measurements by the estimation of
the correlation length ��� inferred from the two-scale-factor
universality. First, the corresponding notations are introduced
for the following.

�i� The physical singular behaviors

� = �0
±���*�−��1 + a�

±���*��� , �25�

�T,
* = �±���*�−��1 + a�

±���*��� , �26�

�cV,
* =

A±

	
���*�−	�1 + 	aC

± ���*��� + Bcr
* , �27�

�̃LV = B���*���1 + aM���*��� . �28�

� of Eq. �25� is the actual size of the critical fluctuations of
the order parameter density. �T,

* = pc�T of Eq. �26� is the
dimensionless form of the susceptibility �T,=2�T at =c.
�cV,

* =�cV
Tc

pc
of Eq. �27� is the dimensionless form of the

singular heat capacity at constant volume. �̃LV=
�LV

2c
of Eq.

�28� is the “symmetrical” dimensionless form of the order
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parameter density in the non homogeneous domain �T�Tc�.
Equations �26�–�28� are written with useful dimensionless
variables of fluid related critical phenomena �26� �for which
a complementary analysis is made in the next subsection�, to
be consistent with the normalization of the thermodynamics
and the role of the energy and length units given by Eqs. �3�
and �4�, respectively. The universal values of the critical ex-
ponents �, �, 	, and �, estimated by Guida et al. �25� are
given in column 2 of Table I. �=0.502�±0.004� �25� is the
lowest value of the confluent exponent. The leading ampli-
tudes �0

±, �±, A±, B, and the confluent amplitudes a�
±, a�

±, aC
±,

aM, are fluid dependent quantities; three �two leading ampli-
tudes and one confluent amplitude� of them are characteristic
of each one component fluid, in conformity with the two-
scale-factor universality.

�ii� The master singular behaviors

�qf
* = Z�

+�T*�−��1 + Z�
+�T*��� , �29�

�qf
* = Z�

±�T*�−��1 + Z�
1,±�T*��� , �30�

�Cqf
* = ZC

±�T*�−	�1 + ZC
1,±�T*��� , �31�

Mqf
* = ZM�T*���1 + ZM

1 �T*��� , �32�

where �qf
* , �qf

* , �Cqf
* , and Mqf

* are the renormalized forms of
the correlation length, the susceptibility, the singular heat
capacity, and the order parameter density, respectively. Note
that a master critical constant corresponding to the critical
background term of the singular behavior of the specific heat
�see Eq. �27�� is ignored in Eq. �31�. That infers no limitation
on the practical use of this equation since the actual back-

ground constant �to be determined� also contains the contri-
bution of the regular behavior of the specific heat �see Eq.
�33� below�. The master �i.e. constant� values of the leading
�Z�

+, Z�
+, ZC

+, and ZM� and confluent �Z�
1,+, Z�

1,+, ZC
1,+, and

ZM
1 � amplitudes are given in columns 3 and 4 �respectively�,

of Table I. As already mentioned in Sec. II C, the values
of these master amplitudes are obtained from reference
to the asymptotic singular behavior of xenon �8,10,21�. Here,
the results are presented in Table I selecting Z�

+, ZM,
and Z�

1,+ as three independent amplitudes to characterize
the one-component fluid subclass. Correspondingly, the criti-
cal exponents �=1.23959, �=0.325785, and �=0.50189, are
selected as independent exponents �with these central
numerical values estimated in Refs. �25,24��. Then the mas-
ter values of Z�

+, ZM, and Z�
1,+ are obtained using the equa-

tions given in columns 6 and 7, with �+�Xe�=0.0583,
B�Xe�=1.467, a�

+�Xe�=1.23, and Yc�Xe�=4.88, Zc�Xe�
=0.286, �qe

* �Xe�=1. All the other numbers quoted in Table I
are calculated using the self-consistent theoretical estima-
tions of the central values of the universal critical exponents
and the universal amplitude combinations given in Refs.
�25,24�. As a consequence, their numerical precision cannot
reflect the actual �experimental and theoretical� uncertainties.
Finally, the main important point to note here is that the
numbers quoted in Table I are “fixed” within the same pre-
cision level of the universal numbers estimated on the theo-
retical MR scheme, only using the “best” values of three
experimental amplitudes which characterize the Ising-like
singular behavior of xenon. In addition, we note that the
master correlation length lqf

* of Eq. �29� provides a direct
comparison of the size of the critical fluctuations to the range
of molecular interaction, in order to control that the basic

TABLE I. Parameters for the master �Eq. �23�� and physical �Eq. �24�� singular behaviors of master �Pqf
* �

and physical �P� properties, respectively, within the preasymptotic domain, along the critical isochore of the
one component fluids. Columns 1–4: Parameters for the master critical behavior of the correlation length �Eq.
�29�, the susceptibility �Eq. �30��, the specific heat �Eq. �31��, and the order parameter density �Eq. �32��.
Columns 5–7: Calculated parameters for the physical critical behavior of the correlation length �Eq. �25��, the
susceptibility �Eq. �26��, the specific heat �Eq. �27��, and the symmetrical density difference �Eq. �28��.
Exponent values �column 2�, amplitude ratios values �not explicited here�, and �=0.50189, are from central
values calculated in Refs. �25,24�. In columns 3 and 4, superscript �asterisk� indicates the leading amplitudes
Z�

+ and ZM, and the confluent amplitude Z�
1,+, which are selected as three independent amplitudes �with their

corresponding critical exponents �, �, and �, selected as independent exponents� to characterize the Ising
like universal features of the one-component fluid subclass �see text�. At each numerical value of the inde-
pendent amplitude is attached the actual �experimental and theoretical� uncertainty associated to that of the
corresponding physical amplitudes �+, B �column 6� and a�

+ �column 7� for critical xenon �see text and Ref.
�21��. All the numerical values of the other amplitudes are calculated from the theoretical estimation of the
critical exponents and amplitude combinations given in Refs. �25,24�. These master numbers have a precision
quoted for self-consistency with the central values of universal exponents and amplitude combinations which
cannot reflect the actual �experimental and theoretical� uncertainties on the exponent and amplitudes values
�see text�.

Pqf
*

x
�25� ZP

± ZP
1,± P P0

± P1
±

�qf
* �=0.6304 Z�

+=0.570365 Z�
1,+=0.37685 � �0

+=	c�qe
� �Yc�−�Z�

+ a�
+=Zl

1,+�Yc��

�qf
* �=1.23959 Z�

+=0.119��� Z�
1,+=0.555��� �T,

* �+= ��qe
* �d−2�Zc�−1�Yc�−�Z�

+ a�
+=Z�

1,+�Yc��

�Cqf
* 	=0.1088 ZC

+=0.105656 ZC
1,+=0.5231 �cV,

* A+

	 = ��qe
* �−d�Yc�2−	ZC

+ aC
+ =ZC

1,+�Yc��

Mqf
* �=0.325785 ZM=0.468�*� ZM

1 =0.4995 �̃LV B= ��qe
* �−1�Zc�−1/2�Yc��ZM aM =ZM

1 �Yc��
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condition lqf
* �1 is valid for critical phenomena understand-

ing �21�. That provides also a criteria to define the master
extension of the Ising-like preasymptotic domain for the one-
component fluid subclass.

B. Thermodynamic properties

1. The isothermal susceptibility

Considering a mass unit of the fluid as in the standard
thermodynamic presentation of specific properties, the sus-
ceptibility �T,= � �

��
�
T
=� �

�p �
T

�kg2 J−1 m−3� is expressed in

units of
c

2

pc
, while the subscript  indicates the thermody-

namic normalization per mass unit. Therefore, in Eq. �26�,
�T,

* =�T,
pc

c
2 =�T� 

c
�2pc= �̃�2�T

*, with �T= 1


� �
�p

�
T and �T

*

= pc�T. �=
�p̄

mp̄
is the chemical potential per mass unit, con-

jugated from the �mass� density . �T is the isothermal com-
pressibility. ̃= 

c
is the practical dimensionless form of the

density, which differs by a factor Zc from the dimensionless

form *=
�	c�d

mp̄
obtained with the length unit 	c �7,8�. We

note that the above susceptibility �T, also differs from the
susceptibility �T,p̄= � �n

��p̄
�
T
=n� �n

�p �
T

�J m3�−1 where the sub-

script p̄ stands for the thermodynamic normalization per par-
ticle. Expressing �T,p̄ in coherent units of

�c

�	c�d �i.e., using

Eqs. �3� and �4��, we obtain �T,p̄
* = � 1

Zc
�2�T,

* = �nc
*�2�T

* �with

n*=n�	c�d�. However, pressure �
� energy
volume

�� appears appropri-

ately expressed in units of pc=
��c�−1

�	c�d , within the both �practi-

cal and coherent� dimensionless formulations.

2. The heat capacity at constant volume

The total heat capacity at constant volume CV
�J K−1� of
the fluid mass M is divided by the total fluid volume V, in
order to have a unit of cV,, where cV,=

CV

M 
�J kg−1 K−1� is
the specific heat at constant volume. The dimensionless spe-
cific heat cV,

* is then obtained expressing the total heat ca-
pacity in units of

pcV

Tc
, so that cV,

* =cV
Tc

pc
. Therefore, in Eq.

�27�, the singular specific heat �cV,
* ���*� is such that the

total specific heat cV,
* �T*� as a function of T*= T

Tc
reads as

follows:

cV,
* �T*� = �cV,

* ���*� + CB
*�T*� . �33�

In Eq. �27�, Bcr
* is a critical constant while, in Eq. �33�,

CB
*�T*� is the regular background reflecting the analytical

part of the free energy. In our coherent formulation of the
particle properties, the heat capacity per particle cV,p̄=

CV

N

�J K−1� has the �universal� kB dimension. As a matter of
fact, the heat capacity per particle is the unique measurable
thermodynamic property which can be made dimensionless
only using the Boltzmann factor kB, i.e., without reference to
	c and ��c�−1. Therefore, when the singular heat capacity at
constant volume, normalized per particle, obeys the
asymptotic power law

�cV,p̄ =
A0,p̄

±

	
���*�−	�1 + O����*��	� �34�

along the critical isochore, one �+ or −� among the two di-

mensionless amplitudes
A0,p̄

±

kB
is mandatorily a characteristic

fluid-particle-dependent number �the two amplitudes being

related by the universal ratio
A0,p̄

+

A0,p̄
− �0.537 for d=3 �25��.

However, hyperscaling features impose that the same length
scale is used in thermodynamic and correlation functions.
For example, in the case of an “uncompressible” 3D Ising-
system of the lattice spacing aIsing, the singular part of the
heat capacity normalized by kB can be expressed in unit of
�aIsing�d �27� �the extensive nature of the total number of
particle is then implicitly accounted for in a crystallized solid
system since the total volume is proportional to the cell lat-
tice volume filled with a fixed number of particles�. Simi-
larly, in the case of the compressible one-component fluid,
one needs to express normalized heat capacity per particle in
unit of �	c�d �ignoring in this simple dimensional analysis
the quantum effects on the microscopic wavelength�. The-
number of particles within the critical interaction cell being
1
Zc

, we thus define the singular part of the heat capacity for
the volume of the critical interaction cell as follows:

�cV,I
* =

1

Zc
�cV,p̄

* , �35�

where �cV,p̄
* =

�cV,p̄

kB
. Accordingly, 1

Zc
takes equivalent micro-

scopic nature of the coordination number in the lattice de-
scription of the three dimensional Ising systems, while 	c
takes equivalent microscopic nature of the lattice spacing
aIsing. Now, for comparison with the notations used in fluid-
related critical phenomena where all the thermodynamic po-
tentials are divided by the total fluid volume, we also intro-
duce the heat capacity at constant volume, for a fluid in a
container of unit volume, �cV=1=

�cV,p̄

vp̄,c
�labeled here with the

subscript V=1�. Using the above length unit �Eq. �4��, the
associated dimensionless form reads

�cV=1
* =

�cV,p̄

kB
�

1

vp̄,c�	c�−d =
�cV=1

kB
�

1

�	c�−d . �36�

Obviously, �cV=1
* is identical to �i� The previous dimension-

less form �cV,
* =

�CV

V �
Tc

pc
of the total singular heat capacity

�CV=N�cV,p̄ of the constant total fluid volume V, filled with
N �fixed� particles and �ii� the dimensionless form �cV,I

*

=�cV,p̄
* �

1
Zc

of the singular heat capacity of the microscopic
interacting volume vc,I �Eq. �9��, filled with 1

Zc
�fixed� par-

ticles. In this latter situation, we have an explicit comprehen-
sion of the extensive nature of the two independent variables
V and N for compressible fluids. Specially, we note here the
importance of the thermodynamic normalization for a better
understanding of the scaling nature of the critical amplitudes,
such as in Eq. �27� for example. Considering the hyperscal-
ing law 2−	=d� with its attached universal quantity made
by the product
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���*�2 �
�cV,

*

�	c�d � �d = universal quantity

and rewriting this product such as

���*�2 �
1

Zc
� ��cV,p̄

* �� � �
	c
�d

= �R�
±�d

�with R�
+
�0.2696 and R�

−
�0.169, for d=3 �25��, we can

easily demonstrate that the universal amplitude combination

�R�
±�d =

1

Zc
�A0,p̄

±

kB
�� �0

±

	c
�d

�37�

contains the two independent extensive features �volume and
number of particles� of the fluid system at the scale of the
critical interaction cell. In such a situation, the dimensioned
leading amplitudes A0,p̄

± �associated to a particle property�,
and �0

± �associated to the microscopic wavelength�, have
well-understood physical meanings with respect to the uni-
versal features of the universality class. As an essential con-
sequence, the universal feature of any singular free energy
must then be expressed in terms of the unique remaining
energy scale ��c�−1. We will return below �see Sec. III C� to
this important remark to account for quantum effects in the
master singular behavior of the one-component fluid sub-
class.

3. The densities and the chemical potentials

We finally consider the non homogeneous domain below
Tc, where the practical dimensionless form of the symmetri-
cal order parameter density �see Eq. �28�� is defined as

�̃LV����*�� =
�LV����*��

2c
=
L − V

2c
. �38�

L �V� is the liquid �vapor� density of one coexisting phase.
Such a dimensionless form comes from the useful variable
̃= 

c
�see above�, leading to consider the quantity

�̃ =
 − c

c
= ̃ − 1 �39�

as a practical order parameter density, and the quantity

��̃ =
� − �,c

�,c
= �̃ − 1 �40�

as a practical ordering field. �,c=
�p̄

mp̄
is the specific chemical

potential at the critical point. �̃=
�
�,c

is the practical dimen-
sionless form of the chemical potential, which differs by a
factor ��c�p̄,c�−1 from our dimensionless form �p̄

* =�c�p̄
* ob-

tained with the energy unit ��c�−1. From comparison between
the two definitions of the order parameter density by Eqs.
�22� and �39�, we obtain

�̃ = Zc�m*,

�̃LV = Zc�mLV
* , �41�

where

�mLV
* = �nL − nV��	c�d. �42�

The main conclusive remark using these conjugated vari-
ables �̃ and ��̃, of Eqs. �39� and �40�, respectively,
concerns the implicit addition of a new length scale factor

	̃c= � mp̄

c
�1/d

and a new energy scale factor ��̃c�−1=mp̄�,c. As
a consequence, the nonuniversal nature of each leading am-
plitude is a complex combination of the critical factors and
of the two scale factors associated to universal scaling in
fluids.

C. Two-scale-factor universality and quantum effects

In addition to Eqs. �25� to �32�, we now introduce the
following.

�i� The singular part �a�T ,�=
�A

V of the Helmholtz free
energy density, where temperature T and �practical� density
=

Nmp̄

V are the two selected variables to describe a fluid
maintained in a container of constant total volume V. In our
case where order parameter density is related to the �natural�
number density n= N

V , we note �a�T ,n�= �A
V this singular part

of the Helmholtz free energy density. Due to the appropriate
dimensionless form of the pressure mentioned above, both
the useful dimensionless form �a

*���* ,�̃�=
�A

V �
1
pc

and
the natural dimensionless form �a*���* ,�m*�=�c�A

�
�	c�d

V are identical, except for the use of two distinct re-
duced forms �̃ and �m* of the order parameter density.
Along the critical isochore �̃=�m*=0, the singular part of
the free energy behaves as

�a
*���*�  �a*���*� = A�±���*�2−	�1 + O����*��	� .

�43�

The basic thermodynamic definitions of the physical proper-

ties are ��̃���* ,�̃�= � ��a
*

��̃
�
��*, or ��p̄

*���* ,�m*�
= � ��a*

��m* �
��*; �T,

* ���* ,�̃�= � ��̃
���̃

�
��*, or �T,p̄

* ���* ,�m*�

= � ��m*

���p̄
* �
��*

; and
�cV,

* ���*,�̃�

T* =−� �2�ã
��T*�2�

�̃
, or

�cV
*���*,�m*�

T* =

−� �2�a*

��T*�2�
�̃

.

�ii� The renormalized singular free energy density
Aqf

* �T* ,Mqf
* � which, along the isocline Mqf

* =0, asymptoti-
cally behaves as

Aqf
* �T*� = ZA

± �T*�2−	�1 + O��T*��	� �44�

with respect to the renormalized thermal field T* going to
zero. Correspondingly, the thermodynamic definitions of the
renormalized properties of present interest are Hqf

* �T* ,Mqf
* �

=� �Aqf
*

�Mqf
* �

T*
, �qf

* �T* ,Mqf
* �=� �Mqf

*

�Hqf
* �

T*
,
�Cqf

* �T*,Mqf
* �

T* =−� �2Aqf
*

�T*2
�
Mqf

* =0

�with ZA
± =

ZC
±

	�1−	��2−	� �.
It is thus easy to obtain the relations reported in columns

6 and 7 of Table I, using the above basic thermodynamic
definitions of the renormalized and physical variables. That
also provides a comprehensive understanding of the quantum
effect correction to master singular behavior.

As a matter of fact, following the argument first proposed
by Widom �28�, the renormalized energy associated with the

UNIVERSALITY AND QUANTUM EFFECTS IN ONE-¼ PHYSICAL REVIEW E 73, 056110 �2006�

056110-7



spontaneous density fluctuations that extend over a distance
�qf

* must be of order ��c�−1, leading to a renormalized free
energy density of order ��c�	c�d�−1. Along the critical isoch-
ore, this energy will be associated to Aqf

* �T*� of Eq. �44�. The
product Aqf

* �T*�� ��qf
* �d being a universal quantity, the rela-

tive quantum correction to the renormalized singular free en-
ergy reads

Aqf
* �T*� = ��qe

* �dA*�T*� �45�

due to the Eq. �15� for �qf
* . A*�T*� must be the renormalized

singular free energy already defined for nonquantum fluids
such as

A* = �c�	c�d �
�A

V
�46�

Therefore, from the comparison between the leading
terms of the renormalized and the physical second deriva-
tives of the singular free energy densities with respect to
their associated thermal fields, we obtain

A± =
1

Zc

A0,p̄
±

kB
= ��qe

* �−d�Yc�2−	ZC
±. �47�

In addition to the explicit Yc and �qe
* dependences of the

leading dimensionless amplitude A±, the above Eq. �47� also
shows the role of the particle number 1

Zc
as the multiplicative

factor to the particle leading amplitude A0,p̄
± 
�kB�. That pro-

vides understanding of the master �i.e., unique� singular be-

haviors of the one-component fluid subclass in terms of the
master �i.e., constant� properties of the critical interaction
cell of any one-component fluid. Similarly, from the com-
parison between the leading terms of the renormalized and
the physical correlation lengths, we obtain

�0
± = 	c�qe

* �Yc�−�Z�
±. �48�

In Eqs. �47� and �48�, A0,p̄
± 
�kB� and �0

±
�length� have the
appropriate Qc

min and �qe
* dependences to satisfy the univer-

sal amplitude combination of Eq. �37�. These two Eqs. �47�
and �48�, or more generally, all the relations given in the
column 6 of Table I, also demonstrate that the estimation of
the adjustable parameter �q,f, introduced throughout the Eqs.
�12� and �13�, is unequivocally made from the leading power
law behavior of any property, when Qc

min is known. That
provides a very sensitive test of the above phenomenological
approach to account for quantum effects, provided that the
same length scale 	c and the same energy scale ��c�−1 are
used for thermodynamic and correlation functions at T�Tc.
In such a coherent thermodynamic normalization scheme,
the relative quantum modification �proportional to ��qe

* �d� of
the energy within the critical interaction cell is correlated to
the relative quantum modification of the microscopic wave
number �proportional to �qe

* �. We thus provide the micro-
scopic quantum mechanical modification which comple-
ments the macroscopic argument of Widom �28� and Staufer
et al.’s �29� that the free energy associated to fluctuations of
size � were solely responsible for the singular contribution of
thermodynamic potentials and correlation functions.

D. 3He results

For the fermionic quantum fluid 3He, the Qc
min set is com-

posed of the following critical coordinates Tc=3.315546 K,
pc=1.14724 105 Pa, c=41.45 kg m−3, and �c�
=1.1759 105 Pa K−1 �14�. Using Eqs. �4�–�6�, the values of
the four scale factors are ��c�−1=4.5776 10−23 J, 	c

=7.362 10−10 m, Yc=2.39837, Zc=0.301284. By �2 optimi-
zation only using the susceptibility data above and below Tc

in the range ���* ��510−3,with �+

�+ =
Z�

+

Z�
− =4.79 �25�, the adjust-

able parameter �q,f takes the numerical value �q,3He

=0.146423, leading to �qe
* =1.11009. For the specific case of

the heat capacity, the additional critical �Bcr
* � and background

�CB
*� terms are treated as one single adjustable constant

�Bcr
* +CB

*�.
The main results are illustrated in Fig. 1 where the com-

parison is made with the recent published experimental data
�black points in Fig. 1� of Zhong et al. �14�. In order to
simplify the comparison, the same corresponding scaled data
by the asymptotic power law term ���*�−x were used for
susceptibility and heat capacity above Tc, and for coexisting
liquid vapor densities below Tc, which improves the sensi-
tivity of the relative representation from the asymptotic am-
plitude values. Obviously, that provides a simultaneous test
of the quantum effect contribution since, among the four
leading amplitudes �+, A+, �−, and B, only one is readily

FIG. 1. �Color online� Asymptotic two-term predictions com-
pared to the 3He measurements �black points�. The solid �red� lines
are the actual predictions by the dilated scale method �see Eq. �24�
and column 8 of Table II�. The dot-dashed �blue� lines are the
two-term prediction obtained from the best fit by the MSR �d=3

4 �1�
model �14� �Eq. �24�; column 2 of Table II�. The dashed �green�
lines are the two-term prediction obtained from CPM model �36�
�Eq. �24�; column 6 of Table II�. �a� Susceptibility measurements
for T
Tc �corresponding to upper part of Fig. 1 in Ref. �14��. �b�
Specific heat measurements for T
Tc, where the small difference
in the additional constant term CB

* +Bcr
* is accounted in the vertical

scale �see also the lower part of Fig. 3 in Ref. �14�� �c� Suscepti-
bility measurements for T�Tc �see also the lower part of Fig. 1 in
Ref. �14��. �d� Liquid-gas coexisting density measurements �see
also Fig. 4 in Ref. �14��.
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sufficient to define the unequivocal �qe
* dependence. More-

over, to illustrate the first confluent term contribution associ-
ated to the scale dilatation method, the full �red� lines and the
dot-dashed �blue� lines in Fig. 1 correspond to the respective
first-order Wegner expansions obtained from Table I, and
from the initial fit of Zhong et al. �14�, using the minimal
substraction renormalization �MSR� scheme �see also the
corresponding numerical values of the amplitudes listed in
Table II�. For the three selected properties, the predicted sin-
gular behavior fits well the experimental results and matches
the theoretical predictions of the minimal-substraction renor-
malization scheme.

More generally, as shown in Table II, the two-term
asymptotic results obtained with the scale dilatation method
are in good agreement with the two-term parametric model-
ing results recently obtained by Zhong and Barmatz �30�,
based on three different theoretical models. Two of these
models come from the two main field-theoretical renormal-
ization schemes that treat classical-to-critical crossover phe-
nomena, namely the minimal-substraction renormalization
scheme of Dombs and co-workers �31–35�, and the massive
renormalization scheme of Bagnuls and Bervillier �4,5,9,24�.
These schemes are only applied to the primary critical path
corresponding to the homogeneous and nonhomogeneous
domain along the critical isochore. The third model, namely
the crossover parametric model, proposed by Agayan and
co-workers �36,37�, is a complete parametric equation of
state developed from a phenomenological crossover transfor-
mation of a classical Landau expansion of the singular free
energy �38–40�. Although it is phenomenological, this cross-
over Landau model was successfully applied to several one-
component fluids. A previous comparison of the results ob-
tained by the crossover Landau model and the scale

dilatation method was already made in the case of seven
nonquantum fluids �21�. In Table II are reported:

�i� Columns 2 and 3 labeled MSR, the results obtained by
Zhong et al. �14� and Zhong and Barmatz �30� from the
minimal-substraction renormalization scheme;

�ii� Columns 4 and 5 labeled MR6 and MR7, the results
obtained by Zhong and Barmatz �30� from the massive
renormalization scheme in the sixth- �5,9� and seventh-loop
�24� series;

�iii� Columns 6 and 7 labeled CPM, the results obtained
by Agayan et al. �36� and Zhong and Barmatz �30� from the
crossover parametric model;

�iv� Column 8, the results obtained in this work applying
the scale dilatation method, which provides the equations
given in Table I. We recall that the numbers quoted in this
column only account for numerical precision of the theoret-
ical estimations of the central values of the critical exponents
and amplitude combinations given in Refs. �25,24�.

The excellent agreement between the amplitude values
permits to discuss now the introduction of the adjustable
parameters in the modeling, and to explain why only two
adjustable parameters in the models are significant with re-
spect to the fit quality, as concluded by Zhong and Barmatz
�30�.

IV. 3He CRITICAL MODELING

A. The two renormalization schemes along the critical
isochore

As clearly mentioned in the Appendix D of Ref. �14�, the
three free parameters of the MSR-model originate from the
undetermined integration constants z�, za, and z�, associated

TABLE II. Calculated values of the asymptotic critical amplitudes, from fitting the 3He results �14� by application of the crossover
functions obtained on the minimal substraction renormalization �MSR� scheme �columns 2 �14� and 3 �30��, the massive renormalization
�MR� scheme �columns 4 and 5 �30��, and the crossover Landau model �CPM� of the equation of state �columns 6 �36� and 7 �30��, and using
the equations of Table I obtained from the scale dilation method �column 8�, with Tc=3.315546 K, pc=1.14724 105 Pa, c=41.45 kg m−3,
�c�=1.1759 105 Pa K−1, �14� and �q,3He=0.146423 �see text�. Using Eqs. �4� to �6� and the definition of �qe

* from Eqs. �12�–�14�, the values
of the �five� characteristics parameters for 3He are ��c�−1=4.5776 10−23 J, 	c=7.362 10−10 m, Yc=2.39837, Zc=0.301284, and �qe

*

=1.11009. Note that the numbers in column 8 are quoted for a numerical precision which do not reflect their attached level of the
�experimental and theoretical� uncertainties �see text for details�.

Amplitude MSR �14� MSR �30� MR6 �30� MR7 �30� CPM �36� CPM �30� This work

�0
+�Å� 2.71±0.02 2.68±0.04 2.68541

a�
+ 0.732±0.007 0.58474

�+ 0.150±0.007 0.147±0.001 0.146±0.001 0.148±0.001 0.150±0.002 0.153±0.001 0.148247

�− 0.0303±0.0015 0.0299±0.0003 0.0308±0.0001 0.0310±0.0001 0.0310±0.0002 0.030953

a�
+ 0.98±0.08 1.10±0.01 1.13±0.01 1.17±0.01 0.941±0.007 0.81±0.01 0.860931

a�
− 4.29±0.34 4.83±0.05 3.58±0.05 5.30±0.07 4.17±0.07 4.01366

A+

	
3.73±0.45 3.76±0.05 3.72±0.01 3.84±0.02 3.548±0.031 3.63±0.02 3.71132

A−

	
6.97±0.83 7.03±0.10 6.883±0.026 7.149±0.027 6.823±0.01 6.935±0.04 6.90948

	aC
+ 1.2±0.1 0.99±0.01 1.13±0.01 1.07±0.01 0.712±0.006 0.61±0.01 0.810892

	aC
− 1.1±0.1 0.92±0.01 1.17±0.01 0.83±0.01 0.593±0.012 0.74±0.01 0.59712

Bcr
* +CB

* −1.65±0.85 −1.67±0.13 −1.64±0.04 −1.81±0.04 −0.96±1.0 −1.23±0.05 −1.40

B 1.020±0.006 1.021±0.003 1.008±0.004 1.039±0.004 1.0047 1.028±0.004 1.02134

aM 0.91±0.02 0.91±0.01 1.001±0.023 0.218±0.003 0.8441 0.73±0.01 0.77484
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to the flow equations of their respective Z��u�, Zr�u�, and
Zu�u��Z��u��−2 field theoretical functions �here we have
adopted the Zhong et al. notation for za and z�, adding z� as
being the undetermined integration constant to solve Eq. �7�
of Ref. �14��. These integration constants are system depen-
dent and can be obtained by fitting experimental data to the
theory. However, considering uniquely the critical isochore,
the given set composed by the explicit adjustable parameters
�such as �u ,� ,a	 in Refs. �13,14��, or calculated parameters
�such as the leading amplitudes and t0 in Refs. �13,14��, re-
sults in complicated scaled forms of combinations between
z�, za, and z�. Specifically, to correctly account for the z�
system dependence, one needs to use several properties. The
susceptibility fitting results reported in Fig. 2 of Ref. �14�,
where only two �� and t0� among the three scaled parameters
��, a and t0� have the expected power law dependence on
1− u

u* near the fixed point �u=u*�, should also be due to a
non-representative test of one asymptotical scaled form. A
preliminary comparison of the functional forms of the lead-
ing amplitudes obtained from the MSR model and the scale
dilatation method for the case of the non-quantum fluid sub-
class, suggests, for example, that the true independent scaled
factors of each physical system are then such as

za

�z���r
* � Yc �49�

and

z�

�z����
* � Zc. �50�

In Eqs. �49� and �50�, �r
*=�r�u*�=1− 1

� and ��
* =���u*�=−�

are the respective values of the field theoretical functions at
the Ising fixed point u=u* �see the notations of Zhong et al.’s
�14��. This suggestion should be useful for a possible rescal-
ing of the leading amplitudes which gives better evidence for
the two asymptotical parameters which are readily indepen-
dent in the modeling form of the minimal-substraction renor-
malization scheme.

The two-term master asymptotical behavior obtained from
the scale dilatation method can be described �41� by the mas-
sive renormalization scheme of Bagnuls and Bervillier,
thanks to its formal analogy to the basic analytical hypoth-
eses of the renormalization �22,23�. Using a similar approach
which introduces one common �i.e., P* independent� cross-
over parameter  3He, and adjustable prefactors P0,3He

± for

each dimensionless property P*, we obtain the following val-
ues L0,3He

+ =1.2925, X0,3He
+ =1.818, C0,3He

+ =2.1503, and

M0,3He
± =1.0894, for the leading prefactors of the correlation

length, the susceptibility, the heat capacity and the coexist-
ence curve, respectively. These four leading parameters are
interrelated by the following combinations L0,3He

+ �C0,3He
+ �1/d

=1 and
X0,3He

+

�M0,3He
± �2 �L0,3He

+ �−d=1, so that only two of them are

independent, by virtue of the two scale factor universality.
The estimated value of the crossover parameter is  3He

=0.0113. The mean crossover functions �42� will be used in

a future work to implement the master estimation of their
free parameters from the four scale factors defined by Qc,ap̄

min .

B. The crossover parametric model of the EOS

The crossover parametric model comes from the cross-
over Landau model �CLM� of the EOS, based on a phenom-
enological transformation of a classical Landau expansion of
the singular free energy of the fluid as a function of the local
order parameter density. In such a model, the simplest cross-
over description involves three free parameters, made of the
two coupling constants a0 and u0 and one gradient prefactor
c0 �see, for example, Ref. �36� for notations�. After transfor-
mation of variables and coefficients, the three initial system-
dependent coefficients a0, u0, and c0, are replaced by two
dimensionless asymptotic scaling parameters �noted ct and c
in the general CLM approach� and one dimensionless cross-
over parameter �noted g�. However, from the field theory
framework, any description of a 3D Ising-like system with
“finite” cutoff, needs to maintain the appropriate interdepen-
dence between the nonuniversal parameters, specially the
microscopic wavelength �0
�length�−1 and the coupling
constant u0
�length�. Introducing then a common arbitrary
length scale unit permits one to replace the product u0�0 by
the product u� of the corresponding dimensionless wave-
length � and dimensionless coupling constant u. The conve-
nient normalization ū= u

u* , where u* corresponds to the uni-
versal value at the non-Gaussian fixed point, leads to an
arbitrary choice for the dimensionless microscopic wave-
length � and the normalized coupling parameter ū, provided
that ū� remains finite in order to account for theoretical
infinite cutoff approximation �→� and ū→0. In this
infinite-cutoff limit where g is related to the Ginzburg num-
ber �40�, the crossover behavior is then universal by rescal-
ing the thermal-field-like variable using a single crossover

parameter �such as g=
�ū��2

ct
=��X

* , or such as the crossover
temperature tX=ct��X

* , equivalently �40��. However, at the
general symmetrical fourth-order �with only two independent
coupling quantities a0 and u0� of the phenomenological
transformation of the classical Landau expansion of the sin-
gular free energy, the crossover behavior is governed by the
two dimensionless parameters g and ū. In such a situation, all
the dimensionless quantities are canonical constants, pro-
vided one has defined a single microscopic characteristic
length scale for each fluid. That provides implicit connection
between � and ū, or equivalently between � and, for ex-

ample ct, when the explicit g=
�ū��2

ct
dependence is accounted

for, as mentioned above. As a consequence, the only way to
monitor the asymptotic critical behavior of the crossover
Landau model is to change ū, or equivalently ct. We recall
that, in a previous analysis of the corresponding results for
the case of seven nonquantum fluids �21�, we have shown
that

ct�ū�� = Yc � f t�ū�� �51�

and
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c�ū�� = �Zc�1/2 � f�ū�� �52�

are unequivocally related to our scale factors Yc and Zc, re-
spectively. In Eqs. �51� and �52�, f t�ū�� and f�ū�� are two
appropriate universal power laws of the product ū�,
uniquely. In the following, we will also provide one possible
estimation of the coupling constants a0�g� and u0�g� from Yc

and Zc, using the system-dependent coefficients of the cross-
over parametric model.

The three-parameter crossover parametric model contains
two asymptotic scaling parameters, noted l0 and m0, and
again the crossover parameter g. A comparison between defi-
nitions of asymptotic amplitudes �+ and B leads to the fol-
lowing relations:

l0 =
3.38317

ZX

ZM

3.28613
��qe

* �−2�Zc�1/2�Yc��+� �53�

and

m0 =
ZM

3.28613
��qe

* �−1�Zc�−1/2�Yc�� �54�

�see our Table I and Table III of Ref. �36� for details�. Our
direct estimation of the two free values l0=7.0929 and
m0=0.3108 from Eqs. �53� and �54�, are in close agree-
ment with the values l0=6.89±0.12 and m0=0.306±0.01,
deduced from the fitting procedure of Agayan et al. �see
Ref. �36��, and with the values l0=6.902±0.012 and
m0=0.3128±0.0004, recently obtained by Zhong and Bar-
matz �30� in their comparison of theoretical models of cross-
over behavior. Moreover, as previously mentioned, from the
identification of the leading amplitudes given in Table I of
Ref. �36�, calculated using, either the crossover Landau
model, or the crossover parametric model, it is now easy to
show that the two coupling constants a0 and u0 are related to
Yc and Zc �and �qe

* , obviously�, by the following relations:

a0�g� = ��qe
* �−1Zc�Yc��fa0

�g� �55�

and

u0�g� = �qe
* �Zc�2�Yc�2�−�fu0

�g� . �56�

In Eqs. �55� and �56�, fa0
�g� and fu0

�g� are two appropriate
universal power laws of the crossover parameter g.

The first confluent amplitude for the susceptibility
obtained from the crossover parametric model reads

a�
+=g�

+g−�s�1− ū�, with g�
+=0.590, �s=0.51, and g=

�ū��2

ct
�see

Table III of Ref. �36�, with a�
+�1

+ in the notations of
Agayan et al.�. The identification with our corresponding
amplitude a�

+=Z�
1,+�Yc�� �Table I�, gives

g�
+� ū�

�ct�1/2�−2�s

�1 − ū� = Z�
1,+�Yc�� �57�

demonstrating the unequivocal relation between g1/2= ū�
�ct�1/2

and Yc. However, the rescaled coupling constant ū remains
dependent, on the one hand, to the correlation between the

three adjustable dimensionless parameters ct, ū, and � of the
model, and on the other hand, to the master value Z�

1,+

=0.555 initially estimated from the analysis of the isothermal
compressibility data of xenon. That implies the implicit in-
troduction of one characteristic microscopic length which
must have unique “thermodynamic” definition �by Eq. �4��,
whatever the selected one-component fluid. In that “normal-
ized” situation, our present value a�

+=0.861 for 3He, is in
good agreement with for example the values a�

+

=0.941±0.007 �36� and a�
+=0.81±0.01 �30� obtained from

data fitting with the crossover parametric model �see below
for more details on the uncertainty associated to the a�

+ de-
termination�. Accounting for the arbitrary relation �

�ct�1/2 =�

adopted by the authors in Ref. �36�, our calculated value ū
=0.18075 from Eq. �57�, yields g1/2=0.5678, which com-
pares favourably to g1/2=0.528±0.003 obtained from the
data fitting performed by Agayan et al. �36�. Accounting for
the arbitrary relation �

�ct�1/2 = �
�6

adopted by the authors in Ref.

�30�, with � fixed at unity �yielding to g1/2=u*=0.472�, our
calculated value ū=0.35187 from Eq. �57� �yielding
g1/2=0.4513�, compares favorably to ū=0.368±0.004 ob-
tained from the data fitting of Zhong et al. �30�. The 
10%
residual difference between these two estimates of the fluid-
dependent parameters, reflects the small differences between
theoretical values of universal exponents and amplitude com-
binations, added to the uncertainty in the direct estimation of
the confluent amplitude, the latter one being greater than
10%. For example, using “equivalent” crossover Landau
modeling of the same 3He experimental data, the resulting
values are a�

+=0.946±0.006 and a�
+=1.000±0.028 in Ref.

�37�, a�
+=0.941±0.007 in Ref. �36�, and a�

+=0.81±0.01 in
Ref. �30�, while using the minimal-substraction renormali-
zation scheme, the resulting values are a�

+=1.01±0.08 in
Ref. �13�, a�

+=0.98±0.08 or a�
+=1.13±0.01 in Ref. �14�, and

a�
+=1.10±0.01 in Ref. �30�, leading to the practical “mean”

value a�
+=0.97±0.16 �see also Table II�. Nevertheless, this

agreement confirms our previous analyses �10,21� of the con-
fluent correction to scaling for the one-component fluid sub-
class satisfying the classical-to-critical crossover description
along the ideal RG trajectory �43,44�.

V. CONCLUSIONS

The present study in terms of the dilated physical fields
for quantum fluids adds only one well-defined adjustable pa-
rameter, which accounts for microscopic quantum effects
only asymptotically close to the critical point �T�Tc�. The
adjustable parameter is introduced in a phenomenological
manner which maintains universal feature of the singular free
energy in a appropriate microscopic volume. Since our se-
lected standard fluid is xenon, we provide here a comple-
mentary new light to the recent discussions �13,45� about the
definitions of the crossover temperature tX �related to the
crossover parameter g, �or the Ginzburg number�, as men-
tioned in Sec. IV B�. As an essential new consequence, we
note that tX�

1
Yc

along the critical isochore, for T
Tc. There-
fore, our two-term asymptotic hyperscaling seems also com-
patible with �at least� the first-order contribution to the criti-
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cal crossover. However, this observed supplementary
constraint is not a necessity from the field theory framework
�24�. Consequently, our next work �46� is to provide thermo-
dynamic fundaments for the asymptotic master behavior of
thermodynamic and correlation functions which was inferred
from the above minimal information. We also propose a con-
venient mean form �41,42� of the max and min forms for
each complete crossover function recently derived by Bag-
nuls and Bervillier �24�. Such mean functions can be appro-
priately modified to account for the results obtained by the
scale dilatation method �41�, extending thus the analysis of

the crossover behavior of the one-component fluids outside
their Ising-like preasymptotic domain.
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